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SNOW LEVEL IS CRITICAL FOR FORECASTING RUNOFF

* Snow level: the elevation above which snow will fall,
and below which precipitation falls as wet snow or rain
with no accumulation

* Accurate knowledge of snow level influences ability to
forecast the timing and magnitude of runoff generation
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Left: figure illustrating freezing level, melting level, and snow level

Right: diagram of altitude vs. reflectivity depicting the freezing
level, melting layer, and bright band height
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BETTER FREEZING LEVEL FORECASTS NEEDED FOR RESERVOIR OPERATIONS

Case study from Lake Oroville and New
Bullards Bar Reservoirs in California

* Afreezing level forecast error of 350 m is
equivalent to a runoff volume uncertainty
up to over a half of the reservoir flood pool
storage

* The uncertainties can increase by up to >3%
for each additional inch of precipitation

* “This paper is intended to highlight the
impact of Z,, forecast error and the critical
need of Z., forecast accuracy for reservoir
operations”

(a) Freezing-level uncertainty and its impact on reservoir inflow
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(b) Impact on flood pool

Storm Runoff Into Reservoir

_Higher freezing level than predicted Range of inflow volume associated
 Lower freezing level than predicted, with uncertainty in near-term storm

runoff due to uncertainty in freezing level

Water Supply
The uncertainty in reservoir storm inflow volume due to
uncertainty in freezing level forecasts can correspond to a

large fraction of a reservoir’s entire flood control space.

Sumargo, E., F. Cannon, F. M. Ralph, and B. Henn, 2020. Freezing level forecast error can consume reservoir flood control storage: Potentials
for Lake Oroville and New Bullards Bar reservoirs in California. Water Resources Research, 56.



OUR GOAL: IMPROVE FREQUENCY & ACCURACY OF MRR SNOW LEVEL

CW3E MRR network

 CW3E has deployed a network of 10 Micro
Rain Radars (MRR2s) across the western U.S.

CW3E ] CW3E monitoring

® MicroRain Radar watershed

HUCS8 watershed

NOAA

® 449 MHz Radar

® 915 MHz Radar

© FMCW Radar

® S-Band Radar

* We use an algorithm based on White et al.
2003 to detect hourly radar bright band
height values as a proxy for snow level
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Research goals

e Can we quantify the performance of our
existing MRR algorithm at deriving accurate
and frequent snow level measurements?

e Can we improve the accuracy and frequency
of these measurements?

Answer: Yes (with some limitations)
Map of CW3E and NOAA radars in California 4



MRR IS A LOW-COST,

PORTABLE INSTRUMENT FOR OBSERVING SNOW LEVEL

AN

NOAA SPROF (S-band)
10km range, 63m resolution

NOAA FMCW (S-band)
10km range, 40m resolution

CW3E MRR (K-band)
3km range, 100m resolution

Dataset used in this study

CW3E [ CW3E monitoring

© MicroRain Radar watershed

HUC8 watershed

NOAA

® 449 MHz Radar

® 915 MHz Radar

© FMCW Radar

© S-Band Radar

* Co-located MRR and SPROF at Cazadero, CA from Dec 2014 to Mar 2015

0 100 200 km
—— A

 MRR data (200m resolution) provided by authors of Massman et al. 2017 /
* SPROF data obtained from NOAA Physical Sciences Laboratory Cazadero, CA

Massmann, A. K., Minder, J. R., Garreaud, R. D., Kingsmill, D. E., Valenzuela, R. A., Montecinos, A, ... & Snider, J. R. (2017). The Chilean Coastal

Orographic Precipitation Experiment: Observing the influence of microphysical rain regimes on coastal orographic precipitation. Journal of
Hydrometeorology, 18(10), 2723-2743.



MRR HAS LOWER REFLECTIVITY SENSITIVITY VS. SPROF

SPROF shows pronounced peak in reflectivity (radar bright band) while MRR does not

SPROF
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SPROF vs. MRR reflectivity and vertical velocity on Dec 11, 2014
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EXISTING ALGORITHM: DETECTION RATE OF 33%, ACCURACY OF 85%

Define performance metrics: i
* Probability of detection (POD): how often does
the algorithm correctly detect that a bright band .
height value is present? ;;,E-'
* Success ratio (SR): when the algorithm detects a %
bright band height value, how often is it correct T
(within tolerance of +/-100m)? v T
Existing MRR algorithm: POD=33%, SR=85% (n=164) S E— R )

Diagram showing how the White et al. 2003 algorithm works

hits hits
POD = — SR = —
hits + misses hits + false alarms

Pfaff, T., Engelbrecht, A., & Seidel, J. (2014). Detection of the bright band with a vertically pointing k-band radar. http://dx.doi.org/10.18419/0pus-599

White, A. B., P. J. Neiman, F. Ralph, D. Kingsmill, and P. Persson, 2003: Coastal orographic rainfall processes observed by radar during the California land-falling jets experiment. J.
Hydrometeor., 4, 264—282, doi:10.1175/1525-7541(2003)4,264: CORPOB.2.0.CO;2.



IMPROVED ALGORITHM IMPROVES BOTH FREQUENCY & ACCURACY

Cazadero (CZC) Histogram of 15-min Snow Level Error (MRR - S-band) (m)
2014-12-04 to 2015-03-17 Elevation: 478 m

ImprovementS: - Current Algorithm (15-min) Num obs: 164
* Adjusted the reflectivity gradient threshold to 0.61
0.5

compensate for the lower sensitivity of the
MRR

* Added QC checks to remove erroneously high
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IMPROVED ALGORITHM MORE CLOSELY MATCHES SPROF SNOW LEVEL

SPROF

Cazadero MRR: December 11, 2014 UTC ® BB Height BB MMM Hybrid NN NBB
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Example day: Dec 11, 2014

Existing MRR algorithm
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Improved MRR algorithm
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IMPROVED ALGORITHM WAS SELECTED FROM MANY TESTED METHODS

- Algorithm POD [%] SR [%]

Existing algorithm: search for heights meeting Ze and W gradient thresholds 32.86 85.37
2 Existing algorithm modified to search for peak Ze value within 600m above identified heights 31.9 81.71
3 Lin 2019: classify rain vs. snow based on vertical velocity 12.06 20.43
4 Existing algorithm modified with Ze threshold to 0 44.91 91.08
5 Existing algorithm modified with Ze threshold to 0 and resampling threshold to 25% 67.25 79.01
6 Existing algorithm modified with Ze threshold to 0 and fixing NaN issue 44.44 91
7 Existing algorithm modified with Ze threshold to 0, fixing NaN issue, and resampling threshold set to 33% 56.37 88.19
8 Existing algorithm modified with Ze threshold to 0, fixing NaN issue, and QC steps 44.11 91.39
9 Existing algorithm modified with Ze threshold to 0, W threshold set to O, fixing NaN issue, and QC steps 56.25 6.95
10 Existing algorithm modified with Ze threshold to 0, W threshold set to -0.0045, fixing NaN issue, and QC steps 53.77 88.37
11 Existing algorithm modified with Ze threshold to 0, W threshold set to -0.005, fixing NaN issue, and QC steps 50.59 89.63
12 Final algorithm: Existing algorithm modified with Ze threshold to -0.00476, fixing NaN issue, and QC steps 50.12 90.72

Lin, D., Pickering, B., & Neely IlI, R. R. (2020). Relating the radar bright band and its strength to surface rainfall rate using an automated approach. Journal of Hydrometeorology, 21(2), 10

335-353. https://doi.org/10.1175/JHM-D-19-0085.1



ACCURATE OBSERVATIONS ARE CRITICAL FOR FORECAST VERIFICATION

Using the data for forecast verification Snow level vs. freezing level
* Verifying freezing level from a hi-res model Nov-Apr 6-Hourly CNRFC Obs and Hourly Mean MRR Obs at NBB
. . . . With Outliers
OUt!:)Ut near a given §|te location over a given 1500 1500 5000 T————
perlod (e-g.’ CZC durlng WY2023_2024) E E ;Egg: 0=131.3 0=180.0 0=167.9 0=172.9 @=170.2 :Egg —
a EO 750 - - 750 v
* Performance metrics remain similar when 298 0] : - [0 = 3000+
resampled to model time steps 885 o] % % % é:‘im 2 20004 o
= = ' —500 - t - —500 A
* 15-min resolution: POD=50%, SR=91% (n=237) EDg o] S g 1000 - dea
* 1-hour resolution: POD=47%, SR=87% (n=73) o Py o ey Nn VA 1] o SN P
. 2020 2021 2022 2023 2020- 0 1000 2000 3000 4000 5000
* 3-hour resolution: POD=47%, SR=92% (n=25) Water Yoar CNRFC Obs (m MSL)
* 6-hour resolution: POD=50%, SR=92% (n=13)
Resampled observations are the median of values within CNRFC Obs: nearest grid point from 6-hourly 4km gridded freezing level product.
+/—15 min of each model time step Cases with large hourly variations in 0°C were removed.
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LIMITATIONS & NEXT STEPS

Limitations of study Next steps
e Small sample size (3 months of data, from  We recommend co-locating MRRs with other
Dec 2014 — Mar 2015) NOAA SPROF and FMCW radars across the
western U.S.

* Single location

 Differing vertical resolutions: the MRR in * Improve QC for rapid snow leve| changes

this study set to 200m; our CW3E radars * Reprocess all CW3E MRR snow level data

use 100m * Explore other algorithms, such as machine

learning methods

Research article | @® 09 Dec 2020

ated equivalent reflectivity factor {1

Detecting the melting layer with a micro rain radar
using a neural network approach

Maren Brast and Piet Markmann &4 II
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Brast, M. and Markmann, P.: Detecting the melting layer with a micro rain radar using a neural network
approach, Atmos. Meas. Tech., 13, 6645-6656, https://doi.org/10.5194/amt-13-6645-2020, 2020.
12



SUMMARY & DATA ACCESS

Key findings 2’:::1»511‘ IIIIII :arMRR' anuaryOSIl ZOZZ’iUT(fer’ CCCCC {ty“ llTlr; eeeee -):br -
* We improved our MRR snow level EZZZMV ‘ } ‘u[ n
measurements to a detection rate of 50% E‘ii::h | il l Hf | *
and accuracy of 91% (within +/-100m) ot ‘ .. r:
compared to the NOAA SPROF J’ ﬂiM ” ” ’\ | 1 S R IR 4 i R e
 Demonstrated utility of the MRR for snow g;j:: m | Wl RN T,
level observations despite its limited | I‘ lllll(h a*l MIZZT S I T il TR
reflectivity sensitivity m;;}}f” e 7 TS AR TR R SR TET T

Data access

e Data available on CW3E website

e California sites available on California Data
Exchange (CDEC)

Contact: Peter Yao (peyao@ucsd.edu)

CW3E website Download this presentation

13
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