
1 
 

LOCA2 Projections of Hourly Surface Temperatures for Stations in California  

 
Peter Yao, David W. Pierce, Daniel R. Cayan 
Division of Climate, Atmospheric Sciences, and Physical Oceanography 
Scripps Institution of Oceanography, UC San Diego 
February 23, 2024 
 

1) Introduction 
 
Hourly temperature changes are crucial for understanding energy demand and other areas such as 
agriculture and human health. To address the need for this information, a set of future projections of 
hourly temperatures from 1950-2100 was developed for 32 key meteorological stations throughout 
California (plus one station in Nevada) that are used by the energy sector for understanding and 
forecasting the state’s energy demand. 
 
The Localized Constructed Analogs (LOCA) statistical downscaling method (Pierce et al. 2014; Pierce et 
al. 2015a; Pierce et al. 2015b) forms the basis for these projections. An analog matching method is 
applied to the daily LOCA maximum and minimum temperatures (Tmax and Tmin) to construct the 
hourly values, using hourly observations from each station as the training data. This process produces 
values that better represent hourly variability compared to a traditional approach that uses an assumed 
climatological diurnal cycle. Data from 15 CMIP6 GCMs are included in this dataset, with between one to 
ten ensemble members per GCM (129 total simulations for each station). The data includes the CMIP6 
historical period from 1950-2014 and up to three different Shared Socioeconomic Pathway (SSP) 
scenarios for the period 2015-2100, depending on the GCM and ensemble member: SSP245, SSP370, 
and SSP585, which are roughly medium-low, medium, and high emissions scenarios. 
 
The projections developed for California’s Fourth Climate Assessment (Pierce and Cayan 2019) first 
introduced the analog matching method for generating the hourly values based on data from the CMIP5 
GCM archive. In this updated version based on CMIP6 GCMs, the analog matching process remains 
fundamentally the same; however, this new version includes several key improvements. First, the 
observed station temperature data, or training data used to bias correct the LOCA data and provide 
analog days for the matching method, has been updated to a new dataset which includes four additional 
stations (all in Northern California) and a longer period of record for most stations. Second, the climate 
model data that forms the basis of the future projections is now the Localized Constructed Analogs 
version 2 (LOCA2 hereafter) hybrid downscaled product (Pierce et al. 2023a), which features several 
notable changes as well as an expanded set of available ensemble members and future scenarios. Third, 
the station adjustment process has been improved to account for the difference in typical hourly 
progression of temperatures between wet vs. dry days. And finally, the analog matching process has 
been updated to ensure that the daily maxima and minima of the final hourly output exactly matches 
the input daily Tmax and Tmin. 
 
This report will primarily focus on what is new in this version, including a detailed description of the 
updated methodology and verification of the output. Since the analog matching process is largely 
unchanged from the previous version, please refer to the previous report (Pierce and Cayan 2019) for 
the complete details of how it operates. 
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2) Observed station temperature data and quality control process 
 

2.1) Station overview 
 
Projections of hourly near-surface air temperature were developed for 33 stations selected by the 
California Energy Commission (CEC), including 32 stations in California and one in Nevada. Table 1 below 
summarizes the station metadata, and Figure 1 shows their locations. 29 stations match those from the 
previous version of temperature projections (highlighted in blue in Figure 1), while four stations are new 
additions in this version (highlighted in red). The four new stations (KACV, KRDD, KSCK, and KSMF) are all 
located in northern California, which was noted as an area with a lack of coverage in the previous report. 
Observed station data was required for two separate steps of the process (station adjustment and 
analog matching), which are detailed below. 
 

Station ID Lat Lon State Name 

KACV 40.978 -124.105 CA ARCATA AIRPORT 

KBFL 35.434 -119.055 CA MEADOWS FIELD AIRPORT 

KBLH 33.619 -114.715 CA BLYTHE AIRPORT 

KBUR 34.2 -118.365 CA BURBANK-GLENDALE-PASA ARPT 

KCQT 34.024 -118.291 CA DOWNTOWN L.A./USC CAMPUS 

KEED 34.768 -114.618 CA NEEDLES AIRPORT 

KFAT 36.78 -119.72 CA FRESNO YOSEMITE INTERNATIONAL AIRPORT 

KIPL 32.834 -115.579 CA IMPERIAL CO 

KLAS 36.072 -115.163 NV MCCARRAN INTERNATIONAL AIRPORT 

KLAX 33.938 -118.387 CA LOS ANGELES INTERNATIONAL AIRPORT 

KLGB 33.812 -118.147 CA LONG BEACH / DAUGHERTY FIELD / AIRPORT 

KMCE 37.285 -120.514 CA MERCED MUNI MACREADY 

KMOD 37.625 -120.955 CA MDSTO CTY-CO H SHAM FD APT 

KNKX 32.867 -117.133 CA SAN DIEGO MIRAMAR NAS 

KOAK 37.718 -122.233 CA METRO OAKLAND INTL AIRPORT 

KOXR 34.2 -119.204 CA OXNARD AIRPORT 

KPSP 33.833 -116.5 CA PALM SPRINGS INTL 

KRAL 33.95 -117.433 CA RIVERSIDE MUNI 

KRBL 40.152 -122.255 CA RED BLUFF MUNICIPAL ARPT 

KRDD 40.518 -122.299 CA REDDING MUNICIPAL ARPT 

KSAC 38.507 -121.496 CA SACRAMENTO EXECUTIVE AIRPORT 

KSAN 32.734 -117.183 CA SAN DIEGO INTERNATIONAL AIRPORT 

KSBA 34.424 -119.842 CA SANTA BARBARA MUNICIPAL AIRPORT 

KSBP 35.233 -120.633 CA SAN LUIS CO RGNL 

KSCK 37.89 -121.226 CA STOCKTON METROPOLITAN AIRPORT 

KSEE 32.833 -116.967 CA GILLESPIE FLD 

KSFO 37.62 -122.366 CA SAN FRANCISCO INTERNATIONAL AIRPORT 

KSJC 37.359 -121.924 CA N Y. MINETA SN JO INTL APT 

KSMF 38.701 -121.595 CA SACRAMENTO INTL AIRPORT 

KSNA 33.68 -117.867 CA J. WAYNE APT-ORANGE CO APT 
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KTRM 33.632 -116.164 CA DESERT RESORTS RGNL ARPT 

KUKI 39.128 -123.2 CA UKIAH MUNICIPAL AIRPORT 

KWJF 34.741 -118.213 CA GENERAL WILLIAM J. FOX AIRFIELD AIRPORT 
Table 1. Table of the 33 stations included in the dataset. 

 

 
Figure 2. Map of the 33 stations included in the dataset. Stations in blue were included in the original temperature projections 
dataset (Pierce and Cayan, 2019). Stations in red are new additions to this version. 
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2.2) Overview of selected training datasets 
 
Two different observational datasets were used for separate stages of the process: the Global Historical 
Climatology Network daily (GHCNd) dataset (Menne et al. 2012) was used for the station adjustment 
step, while HadISD, which is a global sub-daily dataset based on the ISD dataset from NOAA's NCEI 
(Dunn et al. 2012), was used for the analog matching process.  
 
Two different training datasets were used because of the different requirements between the station 
adjustment and analog matching steps. The station adjustment process requires daily Tmax, Tmin, and 
precipitation values during as much of the LOCA2 historical period (1950-2014) as possible, so GHCNd 
was selected because it provides a more complete and reliable record of daily values than HadISD, and 
because HadISD did not provide a reliable precipitation record. HadISD was identified for the analog 
matching step because it requires hourly temperature observations. 
 

2.3) Observed daily data used for the station adjustment process 
 
Since LOCA2 is a gridded 3-km resolution product, the LOCA2 data from the nearest grid cell to each 
station was then extracted. However, there are typically systematic differences between the LOCA2 
climatology at the grid cell center and the observed station climatology: for example, due to differences 
in elevation between the station and the LOCA2 grid cell, or in regions with a strong temperature 
gradient between adjacent grid cells, such as in coastal areas. The LOCA2 and station climatologies may 
also differ due to systematic differences between the station data and the original gridded temperature 
data used to train LOCA2. 
 
To reduce these differences, a station adjustment step was performed on the LOCA2 data: for each 
month-of-year, this process additively adjusted the daily LOCA2 temperature climatology to match that 
month's observed station climatology during the LOCA2 historical period (1950-2014), and 
multiplicatively adjusted the daily LOCA2 anomalies to match the observed station standard deviation of 
anomalies. The adjustment was also performed separately on wet (precip ≥ 0.5 mm) vs. dry (precip < 0.5 
mm) days to account for systematic differences in typical hourly progression of temperatures on days 
when there is precipitation compared to days when there is not. The station adjustment method is 
described in greater detail in section 3 below. 
 
This process requires a quality-controlled daily dataset of observed Tmax, Tmin, and precipitation at 
each station. Here we chose to use the Global Historical Climatology Network daily (GHCNd) dataset as 
the training data. GHCNd was chosen primarily because of the introduction of the distinction between 
wet and dry days during the station adjustment step, which is new to this version. We originally tried to 
use the hourly resolution HadISD dataset for both the station adjustment and analog matching steps. 
However, this dataset was found to have unreliable precipitation data, which is required for the station 
adjustment but not to perform the analog matching. 
 
The GHCNd data is already quality controlled, although several additional QA/QC steps were performed: 
any days with a quality control flag were excluded, as well as any days when Tmax did not exceed Tmin. 
Then, for each station, only observed days with valid Tmax, Tmin, and precipitation values during the 
LOCA2 historical period (1950-2014) were included. 
 
Table 2 shows the GHCNd station IDs as well as the period of record for each station, represented as the 
starting and ending years during the LOCA2 historical period (1950-2014) when data was available and 
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the number of valid days, rounded into years. A valid day was defined as a day within the LOCA2 
historical period when the observed data meets all quality control checks and has valid values of Tmax, 
Tmin, and precipitation. The total number of valid days was summed for each station and then divided 
by 365 to approximate the number of valid years of training data used for the station adjustment. 
 

Station ID Name GHCNd ID Start 
Year 

End 
Year 

Valid Data 
(Years) 

KLAX LOS ANGELES INTERNATIONAL 
AIRPORT 

USW00023174 1950 2014 65 

KBFL MEADOWS FIELD AIRPORT USW00023155 1950 2014 65 

KCQT DOWNTOWN L.A./USC CAMPUS USW00093134 1950 2014 65 

KFAT FRESNO YOSEMITE 
INTERNATIONAL AIRPORT 

USW00093193 1950 2014 65 

KSFO SAN FRANCISCO INTERNATIONAL 
AIRPORT 

USW00023234 1950 2014 65 

KLAS MCCARRAN INTERNATIONAL 
AIRPORT 

USW00023169 1950 2014 65 

KSAC SACRAMENTO EXECUTIVE AIRPORT USW00023232 1950 2014 65 

KSCK STOCKTON METROPOLITAN 
AIRPORT 

USW00023237 1950 2014 65 

KSAN SAN DIEGO INTERNATIONAL 
AIRPORT 

USW00023188 1950 2014 65 

KBLH BLYTHE AIRPORT USW00023158 1950 2014 64.5 

KLGB LONG BEACH / DAUGHERTY FIELD / 
AIRPORT 

USW00023129 1950 2014 64.5 

KTRM DESERT RESORTS RGNL ARPT USW00003104 1950 2014 64.3 

KMOD MDSTO CTY-CO H SHAM FD APT USW00023258 1950 2014 64.3 

KEED NEEDLES AIRPORT USW00023179 1950 2014 64.2 

KRBL RED BLUFF MUNICIPAL ARPT USW00024216 1950 2014 62.9 

KSBA SANTA BARBARA MUNICIPAL 
AIRPORT 

USW00023190 1950 2014 62.3 

KNKX SAN DIEGO MIRAMAR NAS USW00093107 1950 2014 60.7 

KPSP PALM SPRINGS INTL USC00046635 1950 2014 59.8 

KOAK METRO OAKLAND INTL AIRPORT USW00023230 1950 2014 48.3 

KWJF GENERAL WILLIAM J. FOX AIRFIELD 
AIRPORT 

USW00003159 1974 2014 40.3 

KIPL IMPERIAL CO USW00003144 1962 2014 34 

KRDD REDDING MUNICIPAL ARPT USW00024257 1986 2014 28.4 

KSEE GILLESPIE FLD USC00043410 1959 1979 19.4 

KSBP SAN LUIS CO RGNL USW00093206 1998 2014 16.7 

KACV ARCATA AIRPORT USW00024283 1992 2014 16.7 

KOXR OXNARD AIRPORT USW00093110 1998 2014 16.6 

KSMF SACRAMENTO INTL AIRPORT USW00093225 1998 2014 16.6 

KBUR BURBANK-GLENDALE-PASA ARPT USW00023152 1998 2014 16.5 

KSJC N Y. MINETA SN JO INTL APT USW00023293 1998 2014 16.4 
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KMCE MERCED MUNI MACREADY USW00023257 1998 2014 16.3 

KSNA J. WAYNE APT-ORANGE CO APT USW00093184 1999 2014 15.8 

KRAL RIVERSIDE MUNI USW00003171 1998 2014 15.4 

KUKI UKIAH MUNICIPAL AIRPORT USW00023275 1954 2014 14 
Table 2. Table of the GHCNd stations sorted by the length of valid data during the LOCA2 historical period (1950-2014). 

 

2.4) Observed hourly data used for the analog matching process 
 
Next, the analog matching process transforms the station adjusted daily LOCA2 Tmax and Tmin data into 
hourly temperatures. Briefly, this process (referred to as the hourly disaggregation) works by stepping 
through each three-day period in the LOCA2 data and finding the observed three-day sequence of Tmin 
and Tmax that best matches the model’s sequence. The hourly values from the middle day of the 
observed sequence (the analog day) are then used to form the hourly output. A melding step is 
performed to smooth the hourly transitions between days occurring at local midnight, and the final 
output is scaled to match the input daily LOCA2 Tmax and Tmin. 
 
HadISD was selected as the training data for this step because it requires hourly temperature 
observations. Because the HadISD data forms the “pattern library” for the analog matching process, it is 
important that the data is quality controlled and includes as long a period of record as possible. A long 
period of record is desirable here to have as many possible analog days to choose from, and the period 
of record can extend beyond the LOCA2 historical period because the final hourly output is scaled to 
match the input LOCA2 daily Tmax and Tmin. The HadISD data was quality controlled to exclude 
erroneous or unrealistic values, and days with missing values are excluded from the hourly 
disaggregation process. The quality controlled HadISD dataset was provided to us by Eagle Rock 
Analytics.  
 
In addition to the four new stations in northern California, one notable improvement in this version is 
the longer period of record of possible analog days for most stations. In the previous version, the 
observed data covered the period from Jan 1, 2000 through Dec 31, 2018, equaling 19 years of data. As 
shown in Table 3, there are more than 19 years of valid analog days for most stations in this version (all 
but 6 stations). A valid analog day is defined as a day in the observed dataset when all hourly values are 
valid for that day as well as during the preceding and following days (because the analog matching is 
conducted in 3-day sequences).  
 

Station ID Name Start Year End Year Valid Data 
(Years) 

KLAS MCCARRAN INTERNATIONAL AIRPORT 1948 2022 71.1 

KBFL MEADOWS FIELD AIRPORT 1941 2022 66.1 

KSAN SAN DIEGO INTERNATIONAL AIRPORT 1942 2022 64.5 

KSFO SAN FRANCISCO INTERNATIONAL AIRPORT 1948 2022 59.9 

KFAT FRESNO YOSEMITE INTERNATIONAL AIRPORT 1941 2022 59.4 

KRBL RED BLUFF MUNICIPAL ARPT 1948 2022 58.3 

KBUR BURBANK-GLENDALE-PASA ARPT 1943 2022 54.9 

KSAC SACRAMENTO EXECUTIVE AIRPORT 1947 2022 52.5 

KNKX SAN DIEGO MIRAMAR NAS 1948 2022 52.3 
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KOAK METRO OAKLAND INTL AIRPORT 1943 2022 52.1 

KLGB LONG BEACH / DAUGHERTY FIELD / AIRPORT 1943 2022 50.5 

KBLH BLYTHE AIRPORT 1942 2022 50.3 

KSCK STOCKTON METROPOLITAN AIRPORT 1941 2022 49 

KTRM DESERT RESORTS RGNL ARPT 1943 2022 43.4 

KWJF GENERAL WILLIAM J. FOX AIRFIELD AIRPORT 1974 2022 42.4 

KSBA SANTA BARBARA MUNICIPAL AIRPORT 1945 2022 40.8 

KLAX LOS ANGELES INTERNATIONAL AIRPORT 1944 2022 38.5 

KIPL IMPERIAL CO 1973 2022 37.9 

KEED NEEDLES AIRPORT 1948 2022 36.1 

KUKI UKIAH MUNICIPAL AIRPORT 1949 2022 35 

KSMF SACRAMENTO INTL AIRPORT 1973 2022 31.4 

KSJC N Y. MINETA SN JO INTL APT 1968 2022 31.3 

KRDD REDDING MUNICIPAL ARPT 1944 2022 28.6 

KOXR OXNARD AIRPORT 1944 2022 27.4 

KPSP PALM SPRINGS INTL 1943 2022 24.7 

KACV ARCATA AIRPORT 1950 2022 22.3 

KCQT DOWNTOWN L.A./USC CAMPUS 1999 2022 19.6 

KSNA J. WAYNE APT-ORANGE CO APT 1942 2022 18.5 

KMOD MDSTO CTY-CO H SHAM FD APT 1998 2022 18.4 

KRAL RIVERSIDE MUNI 1998 2022 17.9 

KMCE MERCED MUNI MACREADY 1998 2022 15.6 

KSBP SAN LUIS CO RGNL 1998 2022 13.4 

KSEE GILLESPIE FLD 1973 2022 5.9 
Table 3. Table of the HadISD stations sorted by the number of valid analog days. 

 

3) Station adjustment 
 

3.1) Station adjustment method 
 
As described earlier, a station adjustment step is performed on the daily LOCA2 Tmax and Tmin data to 
match the LOCA2 climatology and standard deviation of anomalies during the LOCA2 historical period to 
those of the observed station data. Because the timeseries from the nearest grid cell to each station is 
extracted from the gridded LOCA2 projections, this step helps to account for any systematic differences 
between the LOCA2 climatology at the grid cell center and the observed station climatology. The 
climatology can be thought of as the mean historical temperature for each month-of-year, while the 
standard deviation of temperature anomalies, or departures from the mean, represents the historical 
monthly spread. Both quantities are adjusted in the LOCA2 data to match the observations more closely. 
 
The first step in the process is to calculate the observed climatology from the training data (GHCNd) for 
each station. Means of Tmax and Tmin are calculated for each month-of-year, only including valid days 
during the LOCA2 historical period only (1950-2014). The monthly values are then converted to a day-of-
year climatology via a simple linear interpolation: the monthly means are assumed to be the daily value 
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for the 15th day of each month, and then the remaining daily values are linearly interpolated. The 
climatology values on February 28 and March 1 are averaged whenever the correction is applied to a 
leap day (February 29). 
 
The climatology is calculated separately for wet (precip ≥ 0.5 mm) vs. dry (precip < 0.5 mm) days. The 
top row in Figure 2 shows example GHCNd climatologies at KLAX (Los Angeles, CA): from left to right, the 
climatology for all days, dry days only, and wet days only. 
 

 
Figure 2. Left to right: climatology for all days, dry days, and wet days at KLAX (Los Angeles, CA). Tmax in red, Tmin in blue. 

 
The same method is then repeated for the standard deviation of Tmax and Tmin anomalies. The 
anomalies are first calculated, which are the departures from the day-of-year climatology for each daily 
value. The standard deviation is then calculated for each month-of-year, and the day-of-year values are 
constructed in the same manner as the climatology. An example of the GHCNd standard deviation of 
anomalies at KLAX is shown in Figure 3. 
 

 
Figure 3. Left to right: standard deviation of anomalies for all days, dry days, and wet days at KLAX (Los Angeles, CA). Tmax in 
red, Tmin in blue. 
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3.2) Summer wet day correction 
 
There are cases when there are very few wet days during a given month-of-year in an observed station 
record, typically during the summer months (JJA) at drier station locations. For example, there is only 
one wet day during the month of July at KSJC (San Jose, CA) from the entire GHCNd dataset spanning 
1998-2014. Constructing a climatology based on a small sample size such as in this example can lead to 
large fluctuations between the monthly values (see Figure 4 for an example).  
 
Thus, a summer wet day correction was applied: in cases when there were very few (<10) wet days for a 
given month-of-year across the historical record, a wet day climatology was constructed by starting with 
the climatology for all days (wet and dry) and subtracting the average difference between the all day 
and wet day climatologies during non-winter months (Mar-Nov). This process reasonably recreates what 
the climatology might look like during months when there is a small sample size based on the average 
wet day climatology across all non-winter months. An example of the correction is illustrated in Figure 4, 
which shows the wet day climatology before (dotted line) and after the correction (solid line) at KSJC 
(San Jose, CA). 
 

 
Figure 4. Left: climatology on wet days before (dotted line) and after (solid line) the summer wet day correction at KSJC (San 
Jose, CA). Right: standard deviation of anomalies on wet days before/after correction. Tmax in red, Tmin in blue. 

 
A similar correction was applied to the standard deviation of anomalies: in cases when there were fewer 
than 10 wet days in a given month-of-year, the value for all days (wet and dry) was used instead. In the 
same example at KSJC, the standard deviation of anomalies for July is zero before the correction since it 
is based on only one value (see Figure 4). 
 
Table 4 shows a list of stations for which the correction was applied, including the number of observed 
wet days during each month from May-September. No stations required a correction outside of these 
months. Note that just because there is a small sample size of summer wet days for a given station in 
the observations, that this does not necessarily reflect what the frequency of summer wet days might 
look like in the future as projected by LOCA2. 
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Station ID May Jun Jul Aug Sep 

KBFL 94 27 7 12 52 

KBLH 16 5 85 118 81 

KBUR 16 6 0 2 4 

KCQT 74 21 9 21 52 

KFAT 130 36 7 11 48 

KIPL 4 1 18 31 22 

KMCE 35 9 1 0 9 

KMOD 131 46 9 17 54 

KOXR 24 5 2 2 12 

KPSP 19 7 35 52 47 

KRAL 12 3 6 6 4 

KSAC 166 64 8 22 71 

KSBP 33 11 1 4 7 

KSEE 39 19 4 10 18 

KSFO 166 55 7 21 61 

KSJC 33 10 1 2 10 

KSMF 54 16 2 3 13 

KSNA 17 5 15 2 6 

KTRM 18 4 44 55 61 

KUKI 48 23 3 0 17 

KWJF 33 8 21 16 32 
Table 4. Table of the GHCNd stations requiring the summer wet day correction. Values are the number of observed wet days 
(precip ≥ 0.5 mm) in a given month-of-year from May to September. Months with fewer than 10 observed days are highlighted 
in red. 

 

 
Figure 5. Percent of wet days by month of the year at 3 selected stations. From left to right: KSMF (Sacramento, CA), KFAT 
(Fresno, CA), and KSAN (San Diego, CA).  GHCNd data in black, each LOCA2 historical simulation (only overlapping days from the 
station record during 1950-2014) represented as one blue line. 
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The wet day frequency is overall similar between the observations (GHCNd) and the LOCA2 historical 
data. Figure 5 shows a comparison of the percent of wet days for each month-of-year between GHCNd 
and the overlapping station record from each LOCA2 historical simulation at 3 example stations, one 
each in Northern, Central, and Southern California: KSMF (Sacramento, CA), KFAT (Fresno, CA), and 
KSAN (San Diego, CA). The model error varies by station, with errors generally being higher in the winter 
months.  
 

3.3) Applying the station adjustment to the LOCA2 data 
 
Once the training data is prepared, the station adjustment can be applied to each LOCA2 simulation (129 
total per station). For each GCM, this step adjusts the ensemble mean climatology and standard 
deviation of anomalies (additively for the climatology and multiplicatively for the standard deviation of 
anomalies) based on the difference between the observed values and the LOCA2 ensemble mean. All 
days in the LOCA2 data (1950-2100) are adjusted based on the difference between the GHCNd data and 
the LOCA2 ensemble mean values during overlapping days from the station record. The result is that in 
the station adjusted LOCA2 data, the historical ensemble mean climatology and spread during days 
overlapping with the station record will match the training data. Then, days outside of the station record 
(e.g. any remaining historical days and all days in the future period from 2015-2100) are adjusted using 
the same factor. For example, if the observed Tmax climatology at a given station is 70 degF during June 
dry days and the ensemble mean June dry day climatology for a given GCM is 68 degF, all dry days in 
June for that GCM are adjusted by +2 degF. Similarly, if the observed Tmax standard deviation of 
anomalies is 3 degF over that same period while the ensemble mean value is 6 degF, the anomalies from 
all days during that matching period (e.g. June dry days) are divided by 2. 
 
The first step is to calculate the climatology and standard deviation of anomalies for each LOCA2 
simulation (each GCM, ensemble member, and SSP). The method is the same as for the GHCNd training 
data: the mean or standard deviation of anomalies is calculated for each month-of-year (separately for 
Tmax and Tmin and for wet vs. dry days) and then linearly interpolated to produce the day-of-year 
values. Only overlapping days between the GHCNd station record and the LOCA2 historical period (1950-
2014) are included in the LOCA2 climatology and standard deviation of anomalies calculation. This 
ensures that the observed data availability does not affect the correction. For example, the GHCNd 
station record at KOXR (Oxnard, CA) only extends from 1998-2014 during the LOCA2 historical period. 
Only including the days with observations at KOXR when calculating the LOCA2 climatology ensures that 
the historical data from 1950-1997 is not adjusted based on non-existent observations during those 
years. 
 
Although the climatology and standard deviation of anomalies is calculated for each LOCA2 simulation, 
only the ensemble mean climatology and standard deviation of anomalies for each GCM is used for the 
adjustment to retain the variability between ensemble members. Also note that any future temperature 
trend projected by LOCA2 is preserved during the station adjustment step. 
 
Figure 6 illustrates an example of the climatology station adjustment at KSAC (Sacramento, CA). The top 
row shows the climatology of each LOCA2 simulation as a separate line (Tmax in red, Tmin in blue) 
before the adjustment, while the bottom row shows the adjusted climatologies. The GHCNd climatology 
is shown in black (unchanged between rows). Following the correction, the climatology of the full LOCA2 
ensemble (including all GCMs) should be roughly centered on the GHCNd climatology while retaining the 
variability between individual simulations.  
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Figure 6. LOCA2 historical climatology before (top) vs. after (bottom) the station adjustment is applied at KSAC (Sacramento, 
CA). Left to right: climatology on all days, dry days, and wet days. Each LOCA2 line represents one simulation (e.g. one specific 
GCM ensemble member). GHCNd climatology in black for both Tmax and Tmin. LOCA2 Tmax in red, LOCA2 Tmin in blue.  

 

 
Figure 7. LOCA2 historical standard deviation of Tmax anomalies before (top) vs. after (bottom) the station adjustment is 
applied at KSAC (Sacramento, CA). Left to right: standard deviation of Tmax anomalies on all days, dry days, and wet days. Each 
LOCA2 line represents one simulation (e.g. one specific GCM ensemble member). 
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Figure 8. Same as Fig 7 but for Tmin anomalies. 

 

 
Figure 9. Same as Fig 6 but for LOCA2 ssp3370 end-of century (2075-2100) instead of the historical period. 

 
An example of the station adjusted standard deviation of anomalies is shown in Figure 7 (Tmax 
anomalies) and Figure 8 (Tmin anomalies), also at KSAC. Finally, Figure 9 shows the station adjusted 
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climatology during end-of-century (2075-2100) for the SSP370 scenario to demonstrate how the 
adjustment works for days outside of the historical period. Note that any trend in the climatology from 
the LOCA2 historical period to end-of-century is preserved following the adjustment. 
 
3.4) DTR correction 
 
Since Tmax and Tmin are adjusted independently, there are cases when the adjusted Tmax ≤ adjusted 
Tmin. In these instances, a final correction must be applied to ensure that the diurnal temperature 
range, or DTR, is > 0 for each day (in other words, Tmax > Tmin). A minimum DTR value is calculated for 
each station from the GHCNd training data: we used the 0.1 percentile DTR value for each day-of-year 
during the LOCA2 historical period. Then, in instances when the DTR is smaller than the minimum value, 
the Tmax value is retained and the final Tmin value is adjusted by subtracting the minimum DTR value 
from Tmax. Tmin is treated as the residual here because Tmax is of greater importance for most energy 
demand applications. 
 
The distribution of adjusted LOCA2 DTR values was compared to the DTR distribution from the training 
data to ensure that this correction does not significantly alter the distribution. Figure 10 shows an 
example of the DTR distribution for the training data compared to the LOCA2 historical data 
before/after the station adjustment at an example station, KOAK (Oakland, CA).  As shown in the 
example, the DTR distribution was not significantly altered by the station adjustment. 
 

 
Figure 10. Histograms of DTR at KOAK (Oakland, CA) for one simulation (ACCESS-CM2 r1i1p1f1). Left to right: GHCNd data, 
LOCA2 daily historical data before station adjustment, LOCA2 data after the station adjustment was applied. 

 

4) Hourly disaggregation 
 

4.1) Hourly disaggregation method 
 
The final step is to transform the station adjusted daily LOCA2 Tmax and Tmin into hourly temperature 
projections. This process, or the hourly disaggregation method, remains largely the same as in the 
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previous version. Please refer to the previous report (Pierce and Cayan 2019) for the full details of how 
the method works. 
 
Briefly, the method works by stepping through each 3-day period in each LOCA2 simulation and finding 
the best analog period from the training data, HadISD, based on the 3-day sequence in the station 
record with the lowest RMSE between the 6 Tmax/Tmin values during those days. The middle day of the 
observed sequence with the lowest RMSE is selected as the analog day, and those hourly values are 
used to construct the values for that day in the LOCA2 output. Once all the LOCA2 days are constructed 
by this method, a final melding step adjusts the transitions between days (at local midnight) to remove 
any sharp discontinuities. An example of the first week of the hourly result for one LOCA2 simulation at 
KSAC is shown in Figure 11. The LOCA2 daily Tmax and Tmin are shown in red and blue, respectively, 
while the constructed hourly output is shown in black. 
 
There are several small differences that are new in this version. First, the way in which missing hourly 
values in the training data are handled is slightly different. In the previous version, any missing values 
were filled in with values from the ASOS dataset. In this version, when Tmax and Tmin are calculated 
from the HadISD data, any missing values are set to a very large number (e.g. 999) to ensure that day 
cannot be selected as an analog day. This step also ensures that only 3-day sequences with all 72 hourly 
values valid are considered when finding the best analog day. 
 
Second, the process has been updated to ensure that the daily Tmax and Tmin in the final hourly 
projections exactly match those of the station adjusted LOCA2 data. In the previous version, the melding 
step adjusted the values such that in some cases the daily Tmax or Tmin were then altered. In this 
version, the hourly values for each day undergo a final scaling step to match the daily maxima and 
minima with the LOCA2 Tmax and Tmin data. 
 

 
Figure 11. Example time series plot of the generated hourly LOCA2 output at KSAC (Sacramento, CA). Red/blue lines are the 
input daily LOCA2 Tmax and Tmin values, respectively. The black line is the hourly LOCA2 temperature projection. 
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4.2) Verification of hourly output 
 
Once the hourly projections were completed, several verification plots were produced to check the 
quality of the output. The first step was to plot a random week of hourly values in the training data, 
HadISD, compared to the hourly LOCA2 projections for each station. The objective here is to visually 
inspect the output and make sure that the constructed values look “real” – in other words, if the plots 
were not labeled, one should not be able to identify which plots are observed and which ones are 
modeled. 
 
An example for 3 selected stations, one each in Northern, Central, and Southern California, is shown in 
Figure 12. A random week starting during the month of January (to account for seasonal differences) 
was selected from each of the training data, LOCA2 historical period, and LOCA2 ssp370 future period. 
 

 
Figure 12. Example of randomly selected weeks starting in the month of January at 3 selected stations: KSMF (Sacramento, CA), 
KFAT (Fresno, CA), and KSAN (San Diego, CA). Left to right: HadISD data, LOCA2 historical period, and LOCA2 ssp370 future 
period. Hourly values in black, daily Tmax in red, daily Tmin in blue. 
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Next, several outlier values showing the largest changes in Tmax were compared between HadISD and 
the LOCA2 historical and future periods. Like the previous check, the objective here is to verify that the 
constructed hourly projections are comparable to the observations during periods when the 
temperature changes significantly. Again, Tmax was considered here because of its importance to 
energy demand applications.  
 

 
Figure 13. Largest changes in Tmax at KACV (Arcata, CA). Top to bottom: largest single day spikes in Tmax, largest single day 
dips, largest ramp ups, and largest ramp downs. Left to right: HadISD, LOCA2 historical period, and LOCA2 ssp370 future period. 
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For a given 3-day sequence, let the Tmax values on those days be represented as Tmax1, Tmax2, and 
Tmax3, respectively. Four quantities are then defined according to the equations below: single day 
spikes in Tmax, single day dips, ramp ups, and ramp downs. 
 

𝑇𝑚𝑎𝑥 𝑠𝑖𝑛𝑔𝑙𝑒 𝑑𝑎𝑦 𝑠𝑝𝑖𝑘𝑒 = (𝑇𝑚𝑎𝑥2 − 𝑇𝑚𝑎𝑥1) + (𝑇𝑚𝑎𝑥2 − 𝑇𝑚𝑎𝑥3) 
 

𝑇𝑚𝑎𝑥 𝑠𝑖𝑛𝑔𝑙𝑒 𝑑𝑎𝑦 𝑑𝑖𝑝 = (𝑇𝑚𝑎𝑥1 − 𝑇𝑚𝑎𝑥2) + (𝑇𝑚𝑎𝑥3 − 𝑇𝑚𝑎𝑥2) 
 

𝑇𝑚𝑎𝑥 𝑟𝑎𝑚𝑝 𝑢𝑝 = (𝑇𝑚𝑎𝑥2 − 𝑇𝑚𝑎𝑥1) + (𝑇𝑚𝑎𝑥3 − 𝑇𝑚𝑎𝑥2) 
 

𝑇𝑚𝑎𝑥 𝑟𝑎𝑚𝑝 𝑑𝑜𝑤𝑛 = (𝑇𝑚𝑎𝑥1 − 𝑇𝑚𝑎𝑥2) + (𝑇𝑚𝑎𝑥2 − 𝑇𝑚𝑎𝑥3) 
 
The largest single day spike in Tmax is thus the largest increase in Tmax relative to the preceding and 
following days, while the largest single day dip is the largest decrease. The largest Tmax ramp up is the 
3-day period with the greatest Tmax increase, while the largest Tmin ramp down is the period with the 
greatest decrease. Figure 13 shows an example of these four quantities for one LOCA2 simulation at 
KACV (Arcata, CA). Once again, the results look comparable such that it would be difficult to distinguish 
between the observations and modeled results simply by looking. 
 
Next, days with the largest and smallest DTR were compared, similarly, to ensure that the observations 
and modeled results are comparable. An example at KSAN (San Diego, CA) for one LOCA2 simulation is 
shown in Figure 14. Note that the minimum DTR threshold applied to the projections is based on 
GHCNd, not HadISD. Thus, it is possible for the smallest DTR observed in the projections to be less than 
the smallest DTR observed in HadISD. 
 

 
Figure 14. Largest/smallest DTR days at KSAN (San Diego, CA). Top: days with largest DTR, bottom: days with smallest DTR. Left 
to right: HadISD, LOCA2 historical period, and LOCA2 ssp370 future period. 
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After examining the hourly timeseries of the final projections, the overall hourly temperature 
progression was considered by plotting a few distributions: the distribution of 1-hour temperature 
changes and the distribution of the warmest hour of the day. These distributions for the LOCA2 
projections are expected to be similar to those from HadISD, since the hourly values are constructed 
using the training data. Comparing the distributions simply ensures that the hourly temperature 
progressions in the projections were not significantly altered somehow during the process.  
 
The distributions are plotted for the same 3 stations as in earlier examples (KSMF, KFAT, and KSAN). The 
distribution of hourly changes is shown in Figure 15 while the distribution of the warmest hour of the 
day is shown in Figure 16: in both cases the LOCA2 historical results are very comparable to the training 
data. 
 

 
Figure 15. Histograms of hourly temperature changes for one LOCA2 historical simulation at 3 selected stations: KSMF 
(Sacramento, CA), KFAT (Fresno, CA), and KSAN (San Diego, CA). Top: HadISD, bottom: LOCA2 historical period. 

 
One final consideration is the number of times each analog day from the training data is used in the 
hourly output. For example, it is desirable for variability of the output to ensure that the hourly 
projections are not being constructed from the same handful of repeated analog days. 
 
A few example histograms are shown in Figure 17, for 3 stations with varying station records (number of 
valid analog days): KLAS (Las Vegas, NV) has 71.1 years of valid analog days, KSBA (Santa Barbara, CA) 
has 40.8 years, and KMCE (Merced, CA) has 15.6 years. As expected, the number of times a given analog 
day is selected tends to increase when there are fewer possible analog days to choose from. While this 
did not measurably impact the variability of the output here, a potential consideration for a future 
version of these projections is to limit the number of times that each day in the training data can be 
chosen as an analog day. 
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Figure 16. Histograms of the warmest hour of the day in Local Standard Time (LST) for one LOCA2 historical simulation at 3 
selected stations: KSMF (Sacramento, CA), KFAT (Fresno, CA), and KSAN (San Diego, CA). Top: HadISD, bottom: LOCA2 historical 
period. 

 

 
Figure 17. Histograms of the number of times each analog day was selected for one LOCA2 simulation (1950-2100) at 3 selected 
stations with varying numbers of valid analog days: KLAS (Las Vegas, NV), KSBA (Santa Barbara, CA), and KMCE (Merced, CA).  
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